Inexact inner–outer Golub–Kahan bidiagonalization method: A relaxation strategy

نویسندگان

چکیده

We study an inexact inner–outer generalized Golub–Kahan algorithm for the solution of saddle-point problems with a two-times-two block structure. In each outer iteration, inner system has to be solved which in theory done exactly. Whenever is getting large, exact solver is, however, no longer efficient or even feasible and iterative methods must used. focus this article on numerical showing influence accuracy system. Emphasis further given reducing computational cost, defined as total number iterations. develop relaxation techniques intended dynamically change tolerance iteration minimize illustrate our findings Stokes problem validate them mixed formulation Poisson problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a paradigm shift away from method-wise teaching to strategy-wise teaching: an investigation of reconstructive strategy versus communicative strategy

چکیده: هدف اصلی این مطالعه ی توصیفی تحقیقی در حقیقت تلاشی پساروش-گرا به منظور رسیدن به نتیجه ای منطقی در انتخاب مناسبترین راهکار آموزشی بر گرفته از چارچوب راهبردی مطرح شده توسط والدمر مارتن بوده که به بهترین شکل سازگار و مناسب با سامانه ی آموزشی ایران باشد. از این رو، دو راهکار آموزشی، راهکار ارتباطی و راهکار بازساختی، برای تحقیق و بررسی انتخاب شدند. صریحاً اینکه، در راستای هدف اصلی این پژوهش، ر...

15 صفحه اول

A nonmonotone inexact Newton method

In this paper we describe a variant of the Inexact Newton method for solving nonlinear systems of equations. We define a nonmonotone Inexact Newton step and a nonmonotone backtracking strategy. For this nonmonotone Inexact Newton scheme we present the convergence theorems. Finally, we show how we can apply these strategies to Inexact Newton Interior–Point method and we present some numerical ex...

متن کامل

Convergence Properties of the Inexact Lin-fukushima Relaxation Method for Mathematical Programs with Equilibrium Constraints

Mathematical programs with equilibrium (or complementarity) constraints, MPECs for short, form a difficult class of optimization problems. The feasible set of MPECs is described by standard equality and inequality constraints as well as additional complementarity constraints that are used to model equilibrium conditions in different applications. But these complementarity constraints imply that...

متن کامل

A nonmonotone semismooth inexact Newton method

In this work we propose a variant of the inexact Newton method for the solution of semismooth nonlinear systems of equations. We introduce a nonmonotone scheme, which couples the inexact features with the nonmonotone strategies. For the nonmonotone scheme, we present the convergence theorems. Finally, we show how we can apply these strategies in the variational inequalities context and we prese...

متن کامل

An improved inexact Newton method

For unconstrained optimization, an inexact Newton algorithm is proposed recently, in which the preconditioned conjugate gradient method is applied to solve the Newton equations. In this paper, we improve this algorithm by efficiently using automatic differentiation and establish a new inexact Newton algorithm. Based on the efficiency coefficient defined by Brent, a theoretical efficiency ratio ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Linear Algebra With Applications

سال: 2022

ISSN: ['1070-5325', '1099-1506']

DOI: https://doi.org/10.1002/nla.2484